
1 | P a g e

Last Updated: 16 February 2023

Prepared by: Kevin McGarigal

Tutorial 6. Using sampling strategies to analyze sub-

landscapes

In this tutorial, you will use various sampling strategies to analyze sub-landscapes,

including: 1) exhaustive sampling based on either user-provided tiles, or a systematic

tiling scheme, and 2) partial sampling based on user-specified windows around either

user-provided or random sample points.

Note, this tutorial assumes that you now have a basic working understanding of

FRAGSTATS from completing tutorials #1 and #2 and/or reading the detailed user

guidelines that comes with the FRAGSTATS software.

1. Open FRAGSTATS

First, open FRAGSTATS from the start menu or by double clicking on the FRAGSTATS

icon on the desktop.

2. Create a FRAGSTATS model

Next, create a New FRAGSTATS model, as before (see tutorial #2). Simply click on the

New button on the tool bar or select New from the File drop-down menu. This creates a

blank model for you to parameterize.

3. Import a grid

Next, import a grid to analyze, as before (see tutorial #2). Specifically, click on the Add

layer button in the Batch management section of the user interface on the Input layers

tab to open the import data dialog and add the provided lugrid grid. Note, if you are

working with GeoTIFFs, simply import the GeoTIFF; otherwise, import the

corresponding ascii grid with the following grid attributes:

Row count: 1035
Column count: 1104
Background value: 999
Cell size: 50
Nodata value: 9999

Let's recall from tutorial #1 what the input grid looks like:

2 | P a g e

If you are working with ArcMap, open up the provided fragtutorial_6.mxd project in

ArcMap. The project contains several data layers, as listed in the table of contents,

including a landcover grid (lugrid.tif) for an arbitrary extent in western Massachusetts,

and a tile grid (tiles.tif) and points grid (points.tif) as described below.

If you are not working with ArcMap, you can open up your GIS software and load the

GeoTIFFs, or you can use R to view the ascii grids provided using the procedures

outlined in tutorial #1, but modifying the script accordingly for the ascii grids provided

(lugrid.asc, tiles.asc, and points.asc).

3 | P a g e

4. Optionally, input common tables

Next, you have the option of inputting a class descriptors table and other common

tables, depending on the intended choice of metrics, as before (see tutorial #2). Recall,

the class descriptors table allows you to specify a character description (i.e., patch type)

for each numeric class value, specify whether to compute statistics for each class, and

whether to designate each class as background. The class descriptors table is optional. If

you do not provide this table, then the numeric class values are used in the output, all

classes are enabled and none are treated as background except any class with the

assigned background value (999 in this case).

To use the provided class descriptors file, click on the Class descriptors Browse

button in the Common tables section of the user interface on the Input layers tab and

navigate to the tutorial directory and select the descriptors.fcd file.

Similarly, if you intend to select any of the Core area metrics, Contrast metrics or

Similarity index (on the Aggregation tab) at any level (patch, class or landscape), then

you also need to create and input additional ancillary tables in order to parameterize

these metrics. Recall, if you fail to input these tables or try to input improperly

formatted tables, you will get an error message and the analysis will fail. To use the

provided edgedepth file, click on the Edge depth Browse button in the Common

tables section of the user interface on the Input layers tab and navigate to the tutorial

directory and select the edgedepth.fsq file. Repeat the process above for the provided

contrast.fsq and similarity.fsq tables, as appropriate; these tables provide the edge

contrast weights and similarity coefficients for each pairwise combination of classes

(patch types), respectively.

5. Select metrics

Next, you need to select some metrics to compute, as before (see tutorial #2). Normally,

as in the previous tutorials, we would specify the additional parameters for the analysis

prior to selecting metrics, but the order of operations does not matter and for the

purpose of this tutorial it is more convenient to select metrics first and then work

through the various sampling methods. And for our purposes, let's focus the analysis on

class- and Landscape-level heterogeneity.

To begin, click on the Class metrics button and then on each tabbed set of metrics.

You can choose a subset of metrics or simply "Select all" -- your choice. Note, on the

Area-Edge tab, if you select Total Edge or Edge Density, then you need to consider

how you want to treat any background or boundary edge in the edge calculations. The

default is to not consider any of it as true edge. However, you can choose to treat all of it

as edge or any specified proportion as edge. To change the default, click on the [...]

button and enter your choice. Note, since the input landscape contains a border and

4 | P a g e

does not contain any designated background, the issue is mute since we know the true

status of every edge segment along the landscape boundary and there are no

background edges to worry about. Similarly, on the Aggregation tab, if you select

either the Proximity index, Similarity index, or Connectance index then you also need

to specify additional information. These metrics are "functional" metrics and thus

require additional parameterization. All three of these metrics require a search radius;

the Similarity index also requires a similarity weights table (see above). To specify a

search radius, click on the [...] button and enter the desired search radius in meters;

e.g., 500. Note, a single search radius is specified for the Proximity index and Similarity

index, and a separate threshold distance is specified for the Connectance index.

Lastly, click on the Landscape metrics button and then on each tabbed set of metrics.

Again, you can choose a subset of metrics or simply "Select all" -- your choice. Note, on

the Diversity tab, if you select Relative Patch Richness, then you also need to specify

the maximum number of classes (or patch types). Simply click on the [...] button and

enter the value; 6 in this case.

6. Specify additional parameters for the analysis

Next, you need to specify some additional parameters for the analysis. Click on the

Analysis parameters tab on the left pane of the user interface. Here, is where you

chose the neighbor rule for delineating patches (4 cell rule or 8 cell rule) and specify

whether you want to sample the landscape to analyze sub-landscapes and, if so, by

which method.

For this tutorial, keep the default 8 cell neighbor rule. With regards to sampling method,

let's go through each method in turn to learn about what it is doing.

6.1 User-provided tiles

In this method, the landscape is subdivided into a set of mutually-exclusive and typically

all-inclusive user-defined tiles (sub-landscapes). The tiles should not extend beyond the

landscape boundary; in other words, the tiles should comprise the landscape of interest

(i.e., the extent of positively valued cells). Moreover, the tile grid must have the same

input data format and identical grid extent (i.e., same number of rows and columns),

cell size and cell alignment as the input landscape.

In our example, as shown below (left figure), the input landscape (lugrid) is subdivided

into 40 tiles (sub-landscapes) representing townships. Each tile (town) has a unique

integer-valued id ranging in value from 150 to 420 (note, the id's need not be

consecutive). Each tile will be analyzed separately as a sub-landscape. However,

FRAGSTATS will include a 1 cell wide border around each tile in which the cells are

assigned negative their class value, designating that they are outside the landscape of

5 | P a g e

interest, but providing information on patch type adjacency for cells along the landscape

boundary that will affect the edge-related metrics. Note, the tiles are mutually-exclusive

and all-inclusive, and do not extent outside the landscape of interest (i.e., they do not

extend into the nodata portion of the grid).

Note, it is not required that the tiles be all-inclusive, as in our example. For example, we

could have a tiling scheme that allocates a small to large portion of the landscape to

either background or nodata, as shown in the right figure above. In this particular case,

it would not matter whether the unallocated portion of the landscape is designated as

background or nodata, since both will be treated as negative background (external to the

landscape of interest) by FRAGSTATS.

Select the User-

provided tiles

sampling option in the

Analysis

parameters tab on

the left pane of the

user interface, as

shown here.

In addition, check the boxes for Class and Landscape metrics, as shown. Note, you

must have at least one of these boxes checked or you will get an error message later

when trying to run the model. However, only check the level corresponding to the

metrics you want to compute.

6 | P a g e

Next, import the tile grid. Simply click on the [...] button and repeat the process for

inputting a grid, making sure that the data type is the same as before.

Next, you are ready to Run the model, as before (see tutorial #2). Simply click on the

Run button, verify that the run parameters are correct and click on Proceed.

Lastly, once the run is complete, you can view the results, as before (see tutorial #2).

The major difference between this run and the runs from the previous tutorials is that

the Run list in the top-right pane of the user interface is going to contain a list of

results pertaining to the tiles or sub-landscapes. In this case, the run list should contain

40 rows, one for each tile. Note, the LID field lists the tile number and this corresponds

to the unique tile id in the tile grid.

6.2 Uniform tiles

In this method, the landscape is subdivided into a set of mutually-exclusive and all-

inclusive uniform square tiles (sub-landscapes) of a user-specified size. Note, in the

current version of FRAGSTATS the uniform tiles are limited to squares, but we will

eventually incorporate an option for hexagons.

With this option, FRAGSTATS will create a uniform grid of tiles of the size you specify

that fills out the rectangular input grid starting from the top left corner. This means that

if the landscape of interest is not rectangular, as in our example, that some of the

uniform tiles will overlap the nodata portion of the input grid. Any tile that falls entirely

within the nodata region of the input grid will be discarded by FRAGSTATS. However,

any tile that partially overlaps the landscape of interest (i.e., positively valued cells in the

7 | P a g e

input grid) will be included or excluded depending on the user-specified preference for

the maximum percentage of border/nodata to allow, as described below. In addition,

FRAGSTATS automatically includes a 1 cell wide border around each tile in which the

cells are assigned negative their class value, designating that they are outside the

landscape of interest, but providing information on patch type adjacency for cells along

the landscape boundary that will affect the edge-related metrics.

Let's see how this works.

To begin, select the

Uniform tiles sampling

option in the Analysis

parameters tab on the

left pane of the user

interface, as shown here.

In addition, check the

boxes for Class and

Landscape metrics, as

shown. Note, you must have at least one of these boxes checked or you will get an error

message later when trying to run the model. However, only check the level

corresponding to the metrics you want to compute.

Next, specify the size of the square tile to use in meters. Simply click on the [...] button

and enter the side length in meters. Let's enter 5000 m (5 km) for this example.

Next, you have the option of accepting tiles with a maximum user-specified percentage

of border/nodata. The default is 0%, which means that any tile that contains even 1 cell

of either border (negative cells) or nodata will be discarded. Let's keep the default for

now and see what happens.

Next, you are ready to Run the model, as before (see tutorial #2). Simply click on the

Run button, verify that the run parameters are correct and click on Proceed.

Lastly, once the run is complete, you can view the results, as before (see tutorial #2).

The major difference between this run and the runs from the previous tutorials is that

the Run list in the top-right pane of the user interface is going to contain a list of

results pertaining to the uniform tiles or sub-landscapes. In this case (but not shown

here), the run list should contain 66 rows, one for each valid tile. The SUMMARY in the

Activity log should indicate that there were a total of 110 tiles, but that only 66 were

deemed valid based on the threshold of 0% border/nodata. Note, the LID field lists the

tile number and this corresponds to the unique tile id in the tile grid that is output by

FRAGSTATS.

8 | P a g e

Let's view the uniform tile grid and evaluate its correspondence with the FRAGSTATS

results. Here, I will use ESRI ArcMap, but if you are not working with ESRI ArcGIS, and

you analyzed the provided ascii grid (lugrid.asc), you can use R to view the ascii tile grid

that would have been created using the procedures outlined in tutorial #1, but modifying

the script accordingly for the created ascii grid (tiles00001).

Open up the provided fragtutorial_6.mxd project in ArcMap, if it is not already open

from earlier. Add the created uniform tile grid (tiles00001.tif) to the project. Note,

each time FRAGSTATS creates a tile grid in the same directory, it will increment the tile

grid name by 1. Since this is presumably your first run in this directory, the created tile

grid should be numbered 00001.

9 | P a g e

For our purposes, I changed the symbology to give a different color to each unique tile

and made them 60% transparent. There are two important things to note about the tile

grid:

1. Some of the tiles fall entirely within the nodata portion of the input landscape

(lugrid), while others partially or completely overlap the landscape of interest.

2. There is a strip of nodata at the bottom and on the right size of the tile grid

because the grid dimensions were not perfectly divisible by the user-specified tile

size (5,000 m in this case) and the tiling begins in the top left.

Importantly, because we specified a maximum threshold of 0% border/nodata, any tile

containing even a single cell of nodata was discarded. In fact, the result summary

10 | P a g e

indicates that 44 tiles were discarded out of the 110 total tiles, leaving 66 valid tiles. In

this figure, only the valid tiles are shown on top of the input grid.

Now, let's change the maximum percentage of border/nodata from 0% to say 100% and

see what happens. Note, a 100% doesn't actually mean that a tile that is composed

entirely of nodata will be deemed valid, since this would be nonsensical. A valid tile still

has to have at least one cell in the landscape of interest, regardless. However, this means

that any tile intersecting at least 1 cell of the landscape will be deemed valid.

Change the threshold to 100% and run the analysis and review the results. The run list

(not shown here) should contain 103 rows, one for each valid tile. The SUMMARY in the

Activity log should indicate that there were a total of 110 tiles, and that 103 were deemed

valid. Here's the set of tiles that were analyzed in this scenario. Again, the valid tiles are

shown on top of the input grid.

11 | P a g e

6.3 User-provided points

In this method, the user provides a set of points (in a formatted table) or focal cells (in a

grid) to serve as the center of windows (sub-landscapes) of a user-specified size and

shape. Any point that falls within the nodata region of the input grid will be summarily

discarded by FRAGSTATS. Any point that falls within the landscape of interest (i.e.,

positively valued cells in the input grid) will be included or excluded depending on the

user-specified preference for the maximum percentage of border/nodata in the window

to allow, as described below. In addition, FRAGSTATS automatically includes a 1 cell

wide border around each window in which the cells are assigned negative their class

value, designating that they are outside the landscape of interest, but providing

information on patch type adjacency for cells along the landscape boundary that will

affect the edge-related metrics.

Let's see how this works. To

begin, select the User-

provided points sampling

option in the Analysis

parameters tab on the left

pane of the user interface, as

shown here.

In addition, check the boxes for

Class and Landscape metrics,

as shown. Note, you must have

at least one of these boxes

checked or you will get an error

message later when trying to

run the model. However, only

check the level corresponding to the metrics you want to compute.

Next, specify the shape (round or square) and size (in meters) of the window to use.

Simply click on the [...] button and enter the radius (for round) or side length (for

square) in meters. Let's choose a round window and enter 5000 m (5 km) for this

example.

Next, you have the option of accepting tiles with a maximum user-specified percentage

of border/nodata. The default is 0%, which means that any window that contains even 1

cell of either border (negative cells) or nodata will be discarded. Let's keep the default

for now and see what happens.

Next, you have the option of reading in a points grid or points table to identify the focal

cells. The points grid must have the same input data format and identical cell size and

12 | P a g e

geographical alignment as the input landscape. The grid should contain a unique non-

zero integer value for each focal cell (point) of interest; all others should be set to

nodata. The points table must have the following format.

FPT_TABLE

[first point id#: first point row#: first point col#]

[second point id#: second point row#: second point col#]

etc.

Note, each bracketed item contains point coordinates of the following form: [id : row :

column] or [id:row:column], where point id values must be unique integer values

(duplicates will be ignored), row and column values must be integer values within the

ranges specific to the target dataset, and represent row and column numbers not

geographic coordinates (out-of-range and duplicate coordinates will be ignored). For

example, the first few lines of the points table provided for this example looks like this:

FPT_TABLE

[1:968:1002]

[2:968:935]

[3:965:63]

etc.

Choose either the points grid or points table to load by clicking on the corresponding

radio button. To import the points grid (points), simply click on the [...] button and

repeat the process for inputting a grid, making sure that the data type is the same as

before. To import the points table, simply click on the [...] button, navigate to the

tutorial folder, and select the points.fpt file. In both cases, there are 100 points or focal

cells identified.

Next, you are ready to Run the model, as before (see tutorial #2). Simply click on the

Run button, verify that the run parameters are correct and click on Proceed.

Lastly, once the run is complete, you can view the results, as before (see tutorial #2).

The major difference between this run and the runs from the previous tutorials is that

the Run list in the top-right pane of the user interface is going to contain a list of

results pertaining to the uniform tiles or sub-landscapes. In this case (but not shown

here), the run list should contain 58 rows, one for each valid window. The SUMMARY in

the Activity log should indicate that there were a total of 74 windows considered (out of

100 points), but that only 58 of these were deemed valid based on the threshold of 0%

border/nodata and 16 were skipped because their windows included one or more

border/nodata cells. The remaining 26 points were never even considered because their

windows extended beyond the edge of the rectangular grid. Note, the LID field lists the

point number and this corresponds to the unique point id in the points grid/table.

13 | P a g e

Let's view the points grid and evaluate its correspondence with the FRAGSTATS results.

Here, I will use ESRI ArcMap, but if you are not working with ESRI ArcGIS, and you

analyzed the provided ascii grid (lugrid.asc), you can use R to view the ascii points grid

that would have been created using the procedures outlined in tutorial #1, but modifying

the script accordingly for the name of the ascii grid (points).

Open up the provided fragtutorial_6.mxd project in ArcMap, if it is not already open

from earlier. Note, the ArcMap project contains the points grid (points.tif), as well as a

points shapefile (points shapefile) included for the sole purpose of facilitating the

display of the points. As shown here, the 100 points (red dots) are all located inside the

landscape of interest (i.e., none fall in the nodata region), but vary in their distance to

the landscape boundary (i.e., the edge of the landscape of interest) and the edge of the

rectangular grid.

14 | P a g e

In fact, 26 points are within 5 km of the edge of the rectangular input grid and were

summarily discarded by FRAGSTATS. These points are indicated in the figure below by

having circular buffers that extend beyond the edge of the grid. An additional 16 points

are within 5 km of the landscape boundary (i.e., the edge of the positively valued cells

and the landscape of interest) and were discarded because they did not meet the 0%

border/nodata threshold. This leaves 58 valid windows for the analysis.

Now, let's change the maximum percentage of border/nodata from 0% to say 100% and

see what happens. As noted above, a 100% doesn't actually mean that a window that is

composed entirely of nodata will be deemed valid. A valid window still has to have at

least one cell in the landscape of interest, regardless. However, this means that any

window intersecting at least 1 cell of the landscape will be deemed valid.

Change the threshold to 100% and run the analysis and review the results. The run list

(not shown here) should contain 74 rows, one for each valid window. The SUMMARY in

the Activity log should indicate that there were a total of 74 windows, and that 74 were

deemed valid. This is because the only windows that were summarily discarded were the

26 that extend beyond the edge of the rectangular input grid. All the other windows fall

within the rectangular grid and contain at least 1 cell that is not border/nodata. The

image below shows the 26 points that were discarded.

15 | P a g e

6.4 Random points without overlap

In this method, FRAGSTATS generates random point locations to serve as the center of

windows (sub-landscapes) of a user-specified size and shape such that the windows do

not overlap. The random points are always greater than or equal to the radius of the

window from the edge of the rectangular input grid, and thus none are summarily

discarded as can happen with user-provided points. However, within this constraint, the

random distance from the edge of the landscape of interest (i.e., positively valued cells

in the input grid) depends on the user-specified preference for the maximum percentage

of border/nodata in the window to allow, as described below. In addition, FRAGSTATS

automatically includes a 1 cell wide border around each window in which the cells are

assigned negative their class value, designating that they are outside the landscape of

16 | P a g e

interest, but providing information on patch type adjacency for cells along the landscape

boundary that will affect the edge-related metrics.

Let's see how this works. To

begin, select the Random

points without overlap

sampling option in the

Analysis parameters tab on

the left pane of the user

interface, as shown here.

In addition, check the boxes

for Class and Landscape

metrics, as shown. Note, you

must have at least one of these

boxes checked or you will get

an error message later when trying to run the model. However, only check the level

corresponding to the metrics you want to compute.

Next, specify the shape (round or square) and size (in meters) of the window to use.

Simply click on the [...] button and enter the radius (for round) or side length (for

square) in meters. Let's choose a round window and enter 5000 m (5 km) for this

example.

Next, specify the number of random samples (or point locations) to use; the default is

100. Simply click on the [...] button and enter the sample size. Let's keep the default for

now and see what happens.

Next, you have the option of accepting tiles with a maximum user-specified percentage

of border/nodata. The default is 0%, which means that FRAGSTATS will not generate a

random window that contains even 1 cell of either border (negative cells) or nodata.

Let's keep the default for now and see what happens.

Next, you are ready to Run the model, as before (see tutorial #2). Simply click on the

Run button, verify that the run parameters are correct and click on Proceed.

Lastly, once the run is complete, you can view the results, as before (see tutorial #2).

The major difference between this run and the runs from the previous tutorials is that

the Run list in the top-right pane of the user interface is going to contain a list of

results pertaining to the random windows or sub-landscapes. In this case (but not

shown here), the run list should contain multiple rows, one for each randomly generated

window. The SUMMARY in the Activity log should indicate that there were a total of

somewhere around 14 random windows generated (out of a maximum desired 100).

17 | P a g e

FRAGSTATS attempts to reach the user-specified sample size, but if it fails to create a

valid window after 5,000 attempts it stops. The issue here is that windows cannot

overlap with this sampling option and a 5 km window is pretty big for this landscape,

especially considering that the windows cannot include even a single cell of

border/nodata. Around 14 random windows are all that can fit given these constraints.

Note, the LID field lists the point number and this corresponds to the unique point id in

the generated points grid.

Let's view the FRAGSTATS generated points grid and evaluate its correspondence with

the FRAGSTATS results. Here, I will use ESRI ArcMap, but if you are not working with

ESRI ArcGIS you can use your GIS and the appropriate comparable methods to view the

generated points grid, or if you analyzed the provided ascii grid (lugrid.asc) you can use

R to view the ascii points grid that would have been created using the procedures

outlined in tutorial #1, but modifying the script accordingly for the name of the

generated ascii grid (points00001.asc).

Working with ArcMap: Open up the provided fragtutorial_6.mxd project in

ArcMap, if it is not already open from earlier. Note, the ArcMap project contains the

points grid (points.tiff), as well as a points shape file (points shape) included for the

sole purpose of facilitating the display of the points, but these are the user-provided

points that we worked with earlier. You need to add the FRAGSTATS generated random

points grid that was just created (e.g., points00001.tif). Note, the random points are

extremely difficult to see in their grid form because the focal cells representing the

points can't be displayed larger than they are, so you have to zoom in to see them. You

will want to covert the grid to a shapefile in order to be able to enlarge the points for

display and then you can buffer the points with a 5,000 m circular buffer to see what

happened. Here's how you can do that:

1. Open the Arc Toolbox and select "Conversion Tool", then "From Raster", and

then "Raster to Point". Use the dropdown button to select points00001.tif as

the Input Raster, choose "Value" as the Field, and enter a path and file name

(e.g., points00001) for the Output File. Click on OK at the bottom of the

window and keep your fingers crossed that it doesn't crash.

2. Add the newly created shapefile (e.g., points00001) to the table of contents.

Note, this shapefile has a point for every cell in the original grid and so we need

to select just the actual points of interest.

3. From the Arc Toolbox select "Analysis Tools", then "Extract", and then "Select".

Use the dropdown button to select the newly created shapefile (e.g.,

points00001) as the Input Features, enter a path and file name (e.g.,

points00001x) and enter the following Expression: "GRID_CODE" >0. Click

18 | P a g e

on OK at the bottom of the window and keep your fingers crossed that it doesn't

crash.

4. Add the newly created shapefile (e.g., points00001x) to the table of contents.

Note, this shapefile has a point for each of the grid cells with a value >0, which in

this case is going to be around 14 or so depending on the random placement of

non-overlapping circles. You can modify the symbology of the points to expand

the size of the points so that you can see them better.

5. Next, if you want to add the x-y coordinates of the points to the attribute table of

the shapefile so that if you choose to export the data you have the geographic

coordinates of the points, from the Arc Toolbox select "Data Management Tools",

then select "Features", and then select "Add XY Coordinates". Select the newly

created shapefile (e.g., points00001x) for the Input Features and click on OK at

the bottom of the window.

6. Lastly, you can add a buffer to the points to see what the specified window

around each point looks like, in this case a 5 km radius window. From the Arc

Toolbox select "Analysis Tools, then select "Proximity", and then select "Buffer".

Select the newly created shapefile (e.g., points00001x) for the Input Features,

enter a path and file name (e.g., pointsbuff) for the "Output Feature Class",

enter 5000 for the "Linear unit" and make sure the units are set to "meters", and

click on OK at the bottom of the window. With any luck the buffers should appear

after a while and you can change the symbology to suit.

As shown below, in my particular run, 14 random points (windows) were generated out

of the maximum desired 100 points. Note, the 5 km windows are all contained entirely

within the landscape of interest (i.e., none of them include even a single cell of

border/nodata because we specified a 0% threshold) and are mutually exclusive (i.e., do

not overlap because we specified random points 'without' overlap).

19 | P a g e

Now, let's change the maximum percentage of border/nodata from 0% to say 100% and

see what happens. As noted above, a 100% doesn't actually mean that a window that is

composed entirely of nodata will be deemed valid. A valid window still has to have at

least one cell in the landscape of interest, regardless. However, this means that any

window intersecting at least 1 cell of the landscape will be deemed valid.

Change the threshold 100% and run the analysis and review the results. The run list

(not shown here) should contain multiple rows, one for each randomly generated

window. The SUMMARY in the Activity log should indicate that there were a total of

somewhere around 17 random windows generated (out of a maximum desired 100). The

image below shows the result for my particular run, in which FRAGSTATS generated 17

random windows without overlap. The main difference between this run and the

previous run is that the random windows are allowed to be closer to the edge of the

20 | P a g e

landscape of interest because they can contain any percentage of border/nodata, so long

as the focal cells still fall within the landscape of interest and the windows do not extend

beyond the edge of the rectangular input grid.

6.5 Random points with overlap

In this method, FRAGSTATS generates random point locations to serve as the center of

windows (sub-landscapes) of a user-specified size and shape, but allows the windows to

overlap. The random points are always greater than or equal to the radius of the window

from the edge of the rectangular input grid, and thus none are summarily discarded as

can happen with user-provided points. However, within this constraint, the random

distance from the edge of the landscape of interest (i.e., positively valued cells in the

input grid) depends on the user-specified preference for the maximum percentage of

21 | P a g e

border/nodata in the window to allow, as described below. In addition, FRAGSTATS

automatically includes a 1 cell wide border around each window in which the cells are

assigned negative their class value, designating that they are outside the landscape of

interest, but providing information on patch type adjacency for cells along the landscape

boundary that will affect the edge-related metrics.

Let's see how this works. To begin, select the Random points with overlap sampling

option in the Analysis parameters tab on the left pane of the user interface, as shown

here.

In addition, check the boxes

for Class and Landscape

metrics, as shown. Note, you

must have at least one of

these boxes checked or you

will get an error message

later when trying to run the

model. However, only check

the level corresponding to

the metrics you want to

compute.

Next, specify the shape

(round or square) and size

(in meters) of the window to use. Simply click on the [...] button and enter the radius

(for round) or side length (for square) in meters. Let's choose a round window and

enter 5000 m (5 km) for this example.

Next, specify the number of random samples (or point locations) to use; the default is

100. Simply click on the [...] button and enter the sample size. Let's keep the default for

now and see what happens.

Next, you have the option of accepting tiles with a maximum user-specified percentage

of border/nodata. The default is 0%, which means that FRAGSTATS will not generate a

random window that contains even 1 cell of either border (negative cells) or nodata.

Let's keep the default for now and see what happens.

Next, you are ready to Run the model, as before (see tutorial #2). Simply click on the

Run button, verify that the run parameters are correct and click on Proceed.

Lastly, once the run is complete, you can view the results, as before (see tutorial #2).

The major difference between this run and the runs from the previous tutorials is that

the Run list in the top-right pane of the user interface is going to contain a list of

22 | P a g e

results pertaining to the random windows or sub-landscapes. In this case (but not

shown here), the run list should contain multiple rows, one for each randomly generated

window. The SUMMARY in the Activity log should indicate that there were a total of 100

windows generated. Note, in contrast to the random points without overlap sampling

option, with the random points with overlap sampling option, FRAGSTATS will always

generate the user-specified number of windows. Note, the LID field lists the point

number and this corresponds to the unique point id in the generated points grid.

Let's view the FRAGSTATS generated points grid and evaluate its correspondence with

the FRAGSTATS results. Here, I will use ESRI ArcMap, but if you are not working with

ESRI ArcGIS you can use your GIS and the appropriate comparable methods to view the

generated points grid, or you can use R to view the ascii points grid that would have

been created using the procedures outlined in tutorial #1, but modifying the script

accordingly for the name of the generated ascii grid (e.g., points00002.asc).

Working with ArcMap: Open up the provided fragtutorial_6.mxd project in

ArcMap, if it is not already open from earlier. Note, the ArcMap project contains the

points grid (points.tif), as well as a points shape file (points shape) included for the

sole purpose of facilitating the display of the points, but these are the user-provided

points that we worked with earlier. You need to add the FRAGSTATS generated random

points grid that was just created (e.g., points00002.tif). Note, the random points are

extremely difficult to see in their grid form because the focal cells representing the

points can't be displayed larger than they are, so you have to zoom in to see them. You

will want to covert the grid to a shapefile in order to be able to enlarge the points for

display and then you can buffer the points with a 5,000 m circular buffer to see what

happened. You can follow the procedures outlined above demonstrated for the random

points without overlap.

As shown below for my particular run, FRAGSTATS generated 100 random points

(windows), but allowing them to overlap. Note, the 5 km windows are all contained

entirely within the landscape of interest (i.e., none of them include even a single cell of

border/nodata because we specified a 0% threshold) and are overlapping.

Now, let's change the maximum percentage of border/nodata from 0% to say 100% and

see what happens. As noted above, a 100% doesn't actually mean that a window that is

composed entirely of nodata will be deemed valid. A valid window still has to have at

least one cell in the landscape of interest, regardless. However, this means that any

window intersecting at least 1 cell of the landscape will be deemed valid.

23 | P a g e

Change the threshold 100% and run the analysis and review the results. The run list

(not shown here) should contain multiple rows, one for each randomly generated

window. The SUMMARY in the Activity log should indicate that there were a total of 100

windows generated. The image below shows the result for my particular run, in which

FRAGSTATS generated 100 random windows, but allowing them to overlap. The main

difference between this run and the previous run is that the random windows are

allowed to be closer to the edge of the landscape of interest because they can contain any

percentage of border/nodata, so long as the focal cells still fall within the landscape of

interest and the windows do not extend beyond the edge of the rectangular input grid.

24 | P a g e

